matematik

\

differentialregning

\ differentiationsregler

Differentiationsregler

Idet u, v og w afhænger af x, c er en konstant og n er et heltal gælder:

$$\frac{d}{dx}(c)=0$$
$$\frac{d}{dx}(c·x)=c$$
$$\frac{d}{dx}(c·x^n)=n·c·x^{(n-1)}$$
$$\frac{d}{dx}(u \pm v \pm w \pm...)=\frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx} \pm...$$
$$\frac{d}{dx}(c·u)=c · \frac{du}{dx}$$
$$\frac{d}{dx}(u·v)=u · \frac{dv}{dx}+v · \frac{du}{dx}$$
$$\frac{d}{dx}(u·v·w)=u·v \frac{dw}{dx}+u·w \frac{dv}{dx}+v·w \frac{du}{dx}$$
$$\frac{d}{dx}\left(\frac{u}{v}\right)=\frac{v(du/dx)-u(dv/dx)}{v^2}$$
$$\frac{d}{dx}(u^n)=n·u^{n-1}\frac{du}{dx}$$
$$\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}$$
$$\frac{du}{dx}=\frac{1}{dx/du}$$
$$\frac{dy}{dx}=\frac{dy/du}{dx/du}$$